EXPOSURE HISTORIES OF SEVEN ORDINARY CHONDRITES WITH HELIUM-3 LOSSES. P. Ma¹, G.F. Herzog¹, T. Faestermann², K. Knie², G. Korschinek², G. Rugel², A. Wallner², L. Schultz³, J. Johnson⁴, A.J.T. Jull⁴, and D. Fink⁵. ¹Dept. Chemistry & Chemical Biology, Rutgers Univ., New Brunswick, NJ 08854-8087, ²Fakultät für Physik, Technische Universität München, 85748 Garching, Germany, ³Max-Planck-Institut fur Chemie, Postfach 3060, D-55020 Mainz, Germany, ⁴NSF-Arizona AMS Lab., U. Arizona, Tucson, AZ 85721, ⁵ANSTO, PMB 1, Menai NSW 2234, Australia. <pma@rutchem.rutgers.edu> **Introduction:** Many stony meteorites have lost both cosmogenic and radiogenic He. Some of the losses may have begun when collisions on m-sized meteoroids (rather than on parent bodies) launched fragments into Earth-crossing orbits that passed close to the Sun. Complex exposure histories would follow naturally in this picture. Among meteorites with He losses, complex histories appear to be fairly common for low cosmogenic ²¹Ne contents [10⁻⁸ cm³ STP/g], ²¹Ne_c <1 [1], but rare for larger ones [2]. The cosmogenic nuclide data needed to test for complex exposures are relatively scarce. To investigate further the possible link between complex exposures and helium losses, we have measured cosmogenic nuclides in seven ordinary chondrites with $0.53 \le {}^{21}\text{Ne}_c \le 1.17$, one of them -- Staelldalen -- a fall. **Experimental Methods:** For radionuclide measurements, we separated silicate-rich material with a hand magnet. Procedures for the isolation of Be, Al, and Cl from the silicates followed [3] and [4]. We analyzed sample aliquots for elemental Mn, Fe, and Ni by ICP-MS. We measured the samples' $^{26}\text{Al}/^{27}\text{Al}$ and $^{10}\text{Be}/^{9}\text{Be}$ ratios at ANSTO, and their $^{36}\text{Cl}/\text{Cl}$ ratios at PRIME Lab of Purdue University. Procedural blanks were negligible. The $^{53}\text{Mn}/^{55}\text{Mn}$ ratios were measured by AMS at the Technische Universität München [5]. A procedural blank gave $^{53}\text{Mn}/^{55}\text{Mn} \leq 1 \times 10^{-12}$ (atom/atom). Noble gas measurements for *bulk* samples of ALH 88004 and Markovka followed [6]. **Results:** Results appear in Table 1. We calculated one-stage cosmic-ray exposure (CRE) ages [7] from ²²Ne/²¹Ne ratios and ³He, ²¹Ne, and ³⁸Ar contents (this work and [8]). These ages are often too low for ²²Ne/²¹Ne <1.08. We also calculated CRE ages from the measured radionuclide activities by using compositions from [9] and production rates from both experiment [10] and modeling [11]. ALH 88004 - Exposure for 2-3 My or a complex history: The 36 Cl activity of 5.9 dpm/kg suggests a terrestrial age less than 0.3 My. The measured 22 Ne/ 21 Ne ratio of 1.17 implies 20%-below-normal production rates for 21 Ne and 26 Al. Lower bounds on CRE ages calculated from normal LL-chondrite production rates (22 Ne/ 21 Ne \sim 1.11), are: T_{26} >2.5 My; T_{10} >2.5±0.2; T_{53} >3.1±0.3. Based on the actual 22 Ne/ 21 Ne ratio and approximate CRE ages we expect 26 Al to have reached saturation at ~0.8×60 = 50 dpm/kg. The higher (LL-chondrite-normalized) 26 Al activity of 66 dpm/kg contradicts this conclusion. Loss of 21 Ne – an interesting if speculative possibility for this meteorite, which retains only 18% of its 3 He – or experimental error might resolve the paradox. The alternative is a two-stage irradiation. **Daraj 115 - Simple exposure for 6-7 My:** The $^{22}\text{Ne/}^{21}\text{Ne}$ ratio of 1.31 implies shallow burial, <1 cm. It also suggests a small preatmospheric size and raises hopes for finding SCR effects. The nominal ^{21}Ne age of ~7.3 My would seem to place the meteorite in the main cluster of H-chondrite exposure ages. The H-chondrite-normalized ^{10}Be and ^{26}Al activities (dpm/kg) of 11.4 and 40, however, are somewhat lower than saturation values for small meteorites such as Udaipur (R=11.5 cm; P_{10} =17±1; and P_{26} =44±3 **Table 1**. Cosmogenic nuclide contents, production rates (P), and cosmic ray exposure ages (T, My). | | ALH | Daraj | НаН | IR | Mark | Stael | Ybbs | |------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | IR | LL4 | Н6 | H4 | Н6 | H4 | Н5 | H4 | | Mass (kg) | 0.31 | 0.42 | 0.38 | 1.5 | 8.80 | 3.40 | 1.50 | | ³⁶ Cl | 5.9 | 3.9 | 1.8 | 7.9 | 7.4 | 6.2 | 5.9 | | | ± 0.3 | ± 0.1 | ± 0.1 | ± 0.2 | ± 0.3 | ± 0.2 | ± 0.2 | | ²⁶ Al | 67.0 | 44.2 | 48.8 | 75.5 | 40.5 | 65.0 | 46.4 | | | ± 1.0 | ± 0.8 | ± 0.9 | ± 1.3 | ± 0.9 | ± 1.8 | ± 1.2 | | ¹⁰ Be | 12.0 | 13.4 | 9.4 | 15.3 | 6.6 | 15.4 | 9.2 | | | ± 0.4 | ± 0.5 | ± 0.5 | ± 0.5 | ± 0.2 | ± 0.6 | ± 0.7 | | ⁵³ Mn | 192 | 188 | 182 | 209 | 149 | 190 | 156 | | | ± 11 | ± 24 | ±19 | ±12 | ±16 | ± 43 | ± 33 | | ³ He | 0.80 | 5.68 | 1.91 | 4.1 | 1.01 | 3.60 | 1.61 | | ⁴ He | 188 | 546 | 162 | 674 | 154 | 69 | 868 | | $^{21}Ne_{c}$ | 0.680 | 1.17 | 0.638 | 1.03 | 0.530 | 0.979 | 0.620 | | ³⁶ Ar | 1.47 | 0.73 | 9.93 | 1.98 | 0.65 | 2.04 | 2.03 | | $^{38}Ar_{c}$ | 0.131 | 0.197 | 0.106 | 0.15 | 0.055 | 0.157 | 0.071 | | $^{40}Ar_{r}$ | 368 | 3599 | 5630 | 615 | 1316 | 650 | 3680 | | 22 Ne/ 21 Ne | 1.172 | 1.317 | 1.132 | 1.13 | 1.053 | 1.098 | 1.067 | | 3 He/ 21 Ne | 1.18 | 4.85 | 2.99 | 3.95 | 1.91 | 3.68 | 2.60 | | T_3 | >0.5 | >3.8 | >1.2 | >2.6 | >0.6 | >2.3 | >1.0 | | T_{21} | 2.7 | 7.5 | 2.3 | 3.7 | >1.3 | 3.1 | >1.7 | | T ₃₈ | 3.1 | 5.6 | 2.1 | 3.1 | >1.0 | 3.0 | >1.3 | **Meteorites:** ALH=ALH 88004; Daraj=Daraj 115; HaH=Hammada al Hamra 002; IR=Indio Rico; Mark=Markovka; Stael=Staelldalen; Ybbs=Ybbsitz. **Units:** ³⁶Cl, ²⁶Al, ¹⁰Be in dpm/(kg silicate); ⁵³Mn in dpm/[kg Fe]; noble gas contents in 10⁻⁸ cm³ STP/g. Exposure history of ordinary chondrites with helium-3 losses. P. Ma et al. [12]). Additional discordances at the 10-20% level are the lower CRE ages based on 53 Mn/ 26 Al, 5 ± 1 My, and on 38 Ar, 5.6 My. With T>5 My, the 26 Al/ 10 Be activity ratio of 3.5±0.5 should approximate P_{26}/P_{10} . For GCR production only, modeling [11] gives a smaller value, P_{26}/P_{10} =2, indicating SCR effects. An unusual complex history with two periods of near-surface exposure is possible but seems farfetched. **HaH 002 - 2-3 My of exposure and long terrestrial age:** From [7], we have T_{21} =2.3 and T_{38} =2.1 My. As the 22 Ne/ 21 Ne ratio of 1.13 indicates production rates depressed by only ~10%, the low 36 Cl activity of 1.8 dpm/kg suggests an appreciable terrestrial age, $0.1 \le T_{terr} \le 0.45$ My. The particular choices T=2.3 My and T_{terr} =0.2 My can account for the 26 Al activity but a larger value of T_{terr} , 0.6 ± 0.3 My, is needed to explain the 10 Be activity if P_{10} =17.9 dpm/kg. With T_{terr} =0.2 My, itself an extraordinarily large value for desert meteorites [13], we calculate T_{53} =3.7 ±0.6 and T_{26-53} =3.6 ±1.1 My for P_{53} =378 dpm/[kg Fe]. Our best estimate of the CRE age for this scattered data set is 2.5 ± 0.5 My. Indio Rico - Simple exposure for 3.5 My? Correction for a small amount of atmospheric/trapped neon reduces the measured 22 Ne/ 21 Ne ratio from 1.183 to 1.128/1.142, values that correspond to production rates $\sim 10\%$ below normal. The corresponding CRE ages T_{21} =3.7 My and T_{38} =3.1 My agree fairly well with an age of 4.1 My calculated from 53 Mn. A 10 Be age estimated with P_{10} =0.9×19.6 is 2.8±0.3 My. As in ALH 88004, however, the normalized 26 Al activity of 64.0 dpm/[kg H-chondrite] is inconsistent with the cosmogenic 22 Ne/ 21 Ne ratio. With a liberal allowance for experimental error, a one-stage irradiation lasting about 3.5 My under near normal shielding has some plausibility. The alternative is a two-stage irradiation. Markovka - Deep exposure for 2-3 My or a twostage history: If P_{21} and P_{38} are 35% and 9% above normal [7], then we have $T_{21}=1.3$ My and $T_{38}=0.9$ My, respectively. The very low ²²Ne/²¹Ne ratio of 1.05, however, suggests a large meteoroid and possibly some reduction of P₃ which would lead to an over estimation of ³He loss. By assuming temporarily that shielding factors for the radionuclides are the same as for 21 Ne, we arrive at P_{26} =75 dpm/kg, P_{10} =26 dpm/kg, and P₅₃=570 dpm/[kg Fe]. These values translate into ages of 0.7 My, 0.5 My, and 1.6 My, respectively. From the disagreements of T_{26} and T_{10} with T₂₁ we infer that the shielding correction of [7] for 21 Ne is indeed too large and that T_{21} is too low, as is often the case for such low ²²Ne/²¹Ne ratios. We can fit the activities of ²⁶Al, ¹⁰Be, and ⁵³Mn and the concentration of ²¹Ne within 20% with the production rates of [11] assuming: a meteoroid radius of 1.2 m; a sample depth of 13.2 cm; and a CRE age of 2.2 My. We choose a near-surface location because the measured ³⁶Cl activity indicates low production of ³⁶Cl, <5 dpm/kg, by thermal neutrons. We regard the overall fit to the data as adequate but not compelling. Further analyses of Markovka, and in particular of ³⁶Cl in the metal phase would be useful. **Staelldalen - Simple exposure history:** Except for the 10 Be activity, which is about 1 dpm/kg lower than expected, the data for this unremarkable fall are consistent with a simple exposure history lasting $\sim 3.0 \pm 0.3$ My. Ybbsitz - 2-3 My of deep exposure: Our measured ²⁶Al and ¹⁰Be activities agree well with published values [14]. If P₂₁ and P₃₈ are 20% and 6% higher than normal [7], then we have $T_{21}=1.7$ My and $T_{38}=1.3$ My. The $^{22}Ne/^{21}Ne$ ratio of 1.067 on which these values depend lies in an ambiguous region where ²¹Ne production rates vary. With an increase of 20% over H-chondritic values, we would have P₂₆=67.2, $P_{10}=23.5$, and $P_{53}=504$, implying $T_{26}=0.89\pm0.06$, $T_{10}=1.1\pm0.5$, and $T_{53}=2.0\pm0.7$, and $T_{26-53}=3.9\pm1.5$ (all in My). As with Markovka, these ages disagree unacceptably and so we abandon [7] and instead fit the activities of ²⁶Al, ¹⁰Be, and ⁵³Mn and the concentration of ²¹Ne following [11]. For 1.2-m meteoroid at a depth of 14 cm we obtain a CRE age of 2.6 My for Ybbsitz, with all data matched to within 10%. Again, as with Markovka, a relatively low 36Cl activity indicates a location in the outer 20 cm of the meteoroid. Analysis of ³⁶Cl in the metal phase would provide a good test of the proposed exposure history. Conclusion: Simple exposure histories seem clear or likely for 3 meteorites with He losses and ²¹Ne<1×10⁻⁸ cm³ STP/g: Daraj 115, Staelldalen, and Ybbsitz. One-stage histories are ambiguous or unsatisfactory for ALH 88004, Indio Rico, Markovka, and HaH 002. The burden of proof for a two-stage history is not yet clearly met for the latter four meteorites. We conclude that up to 4 of 7 of our "short-lived" meteorites with He losses *may* have had complex histories. Daraj 115 appears to show the effects of irradiation by solar cosmic rays. References: [1] Herzog G. et al. (1997) MPS, 32, 413-422. [2] Welten K. C. et al. (2001) LPS XXXII, 2148.PDF. [3] Vogt S. and Herpers U. (1988) Fresenius Z. Anal. Chemie, 331, 186-188. [4] Schnabel C. et al. (2001) LPS XXXII, 1353. [5] Knie K. et al. (2000) NIM B, 172, 717-720. [6] Schultz L. et al. (1991) GCA, 55, 59-66. [7] Eugster O. (1988) GCA, 52, 1649-1662. [8] Schultz L. and Franke (2002) MPI für Chemie, Mainz. [9] Newsom H. (1995) AGU Ref. Shelf Series, 174. [10] Vogt S. et al. (1990) [11] Leya I. et al. (2000) MPS, 35, 259-286. [12] Bhandari N. et al. (1993) GCA, 57, 2361-2375. [13] Jull A.J.T. et al. (2000) Radiocarbon, 42, 151-172. [14] Nishiizumi K. (1987) Nucl. Tracks Radiat. Meas., 13, 209-273.